e
A T

SR .

L ! . ]
. "AFOSR}TR—8 1--0574[ \
}
; Final Scientific Report t
/

. May 1981 i
= Ef
T . AFOSR el #76- 3074 t
(e ' '
<

/ I
==~ NEURONAL ADAPTIVE MECHANISMS ,
UNDERLYING INTELLIGENT INFORMATION PROCESSING
ok o
l
4 I4
/o |
e |
» ’ ;.(.,b"
0 TS SRR
10 ' "
\ ¥ charles D. ’qud% M.D, wx O A@EE
Professor of Anatomy, Psychiatry, R o _
and Biobehavioral Science e Ly 1 %
UCLA Medical Center o iy
Los Angeles, California 5
90024 :
o. A /
o !
O
Ll
A ~ 44
(e 1
7 i
B ;
i

Approved for public release 3
distridbutionunlimited,

@ &
-
=
[\
M=
-
o
o




' NILE
DRI T
] Uness
Jua
R
‘I
(.
i,.
[
| K
14 TABLE_OF CONTENTS |
__, | S P,
ii PAGE
{I I SUMMARY 2
| I1 STATEMENT OF WORK 3
*
11T COMPREHENSIVE PROGRESS REPORT - 4
STATUS OF RESEARCH
Tables 15
References 23
IV PUBLICATIONS SUPPORTED BY AFQSR 34
(1976 - PRESENT)
V LIST OF PROFESSIONAL PERSONNEL ASSOCIATED 37
WITH THE RESEARCH EFFORT i

EL * The experiments reported herein were conducted according
§ to the principles described in Guide for the Care and Use
of Laboratory Animals DHEW Publication #(NIH) 78-23.

AIR FORCE OFFICE OF
SCIENTIP
NOTICE OF TRANSMITTAL Tg DDCIC RESEARCH (AFsC)

This technical report has
approved for public releas
Distribution js unlipited
A. D. BLOSE '
Techuical lnrormation orticer

been reviewed and is
© IAW AFR 199-12 (70).

bt e e o s, Bk b ) skl Bl e S0 iiane L s e v damdanid ol pd e e i e et




r"" — - . ere——— - o
!
! ' -
1',
4
1
SUMMARY
]
k By means of this grant, advances were made in: ;
t
1. Identifying key features controlling adaptation in neural networks, r
b
2. Developing and calibrating a device for pressure injection of mi- b
nute volumes through fine micropipettes_
3. Examining, intracellularly, the response of single cortical neurons |
to: ]
3 a. a behavioral unconditioned stimulus used to produce
conditioned behavior:
b. an unconditioned stimulus produced by direct electrical
activation, antidromically, of single, pyramidal tract
neurons ; « (
; c. direct application of pharmacologic agents thought to
ﬂ cause neural adaptation. :

4. Simulating adaptive features of single neurons .

5. Altering rates of acquisition of conditioned behavior by i
direct neuromodulatory procedures.

The results have led to an improved understanding of neuronal adaptive
mechanisms underlying intelligent information processing by the brain and af-
ford the design of improved components for use in artificial intelligence. 1
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STATEMENT OF YORK

The human brain is the most powerful adaptive network known to man. It
is responsible for human intelligence with operations involving automated image
recognition, speech, decision making and compiex motor functions. The same
functions are the goal of artificial intelligence overations, robotics and the
1ike. Attempts to design machines to perform these functions successfully
would benefit from an understanding of how the brain has succeeded in doing so.

Both brain and machine depend on component operations. There is reason to
believe that systems supporting complex goal-seeking adaptive behavior are
best constructed out of goal-seeking adaptive components. Limited understanding
of how such components work has prevented their incorporation into present
artificial intelligence systems.

In the brain the basic component is the neuron. Recent studies indicate
that single cortical neurons adapt in such a way as to support adaptive mammalian
behavior. Post-synaptically, adaptation is reflected at the cellular level
by a change in neural excitability to injected current. We have focussed our
studies on analysis of this type of adaptation.

Twenty-four publications have resulted from the research in this period;
see list of publications - Section D. The ultimate goal of the research is to
provide a foundation for the design of improved adaptive network architectures.




COMPREHENSIVE PROGRESS REPORT - STATUS OF RESEARCH

The general objective was to improve our ability to design adaptive network
architectures by investigating neuronal adaotive mechanisms underlying intelli-
gent information processing in the brain. It wculd be useful to determine if
cellular mechanisms controlling adaptation cnerate in a manner analogous
to goal-seeking. The latter might be a function of excitatory or inhibitory
ionic conductances, cyclic nucleotide gradients, or other measurable variables
that could persistently influence the level of neural excitability. The main
approach was to study control of changes in cellular excitability directly in
single cortical neurons.

A. Specific Objective 1 was to compare current knowledge of elemental
component operations of adaptive networks in the brain with those of artifi-
cial, heterostatic adaptive systems. Ten conferences and one 2-week work-
shop were held (Table 1). The discussions succeeded in identifying key
cybernetic features controlling adaptation of artificial networks as well
as several paraliel neurophysiological mechanisms which could potentially serve
as substrates for controlling neural adaptation. Current knowledge of
heterostatic control of goal-seeking adaptive systems was related to possible
neurophysiological mechanisms that might serve to control plasticity at the
cellular level and the following conclusions were drawn:

1. An adaptive system can be described, cybernetically, as a system
that modifies its internal structure as a function of experience, thereby
altering the system operation. Ordinarily, the system operation will become |
increasingly optimized, by means of feedback, in the approach to some opera- ]
ticnal goal. In this context goal-seeking will be the process by which the

component or adaptive element moves toward or maintains a particular system i
state. i
2. A key feature of any adaptive system will be the features control- l

ling the adaptation. The control sub-system may or may not require asso-
ciated memory. If so, the memory may evolve in a trivial or non-trivial
fashion, with or without variation in the original set point.

3. Control of goal-seeking may be expected to be accomplished by means
of feedback. The latter will ordinarily involve some closed-loop operations.
Interestingly, a great many psychophysiological formulations of adaptive neu-
ral systems have neglected to specify closed-loop operations by which such
feedback could be accomplished as opposed to open-loop operations which do :
not lend themselves to modification of the involved element as a consequence |
of the element's past adaptation (c.f. Kandel and Spencer, 1968).

4. Physiologically, many adaptive cellular systems lend themselves
to closed-Toop goal-seeking processes. These range from biochemical feed-
back loops (within the metabolic context of the cell itself) to recurrent
collateral systems with relatively direct feedback as well 3is indirect
feedback through more extensive polysynaptic networks (cf. Rasmussen and Good-
man, 1977, Phillios, 1974),
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5. At the level of cellular components in the brain, there exist several
candidate mechanisms for the control of neural adaptation.

a. The "Yin-Yang" hypothesis has been advanced in which so-called
excitatory and inhibitory neurotransmitters could control closed-loon goal-
seeking adaptations depending upon neuronal conductance changes by means of
intracellular second messengers such as cyclic AMP and cyclic GMP. The
cyclic nucleotides are thought to interact reciprocally to facilitate either
excitatory or inhibitory effects (Blonm, 1975, 1976; Goldberg et al. 1973).

b. The principle of voltage-dependent control of neuronal spike
activity is well establisned. The possibility arises of voltage dependent induc-
tion or potentiation of cyclic nucleotide release as well as the likelihood of
coupled sodium or potassium-calcium channels with voltage-dependent features
(Loewenstein, 1975; Lux and Eckert, 1974; Heyer and Lux, 1976a,b).

c. Entrainment, i.e. the production of multiple spike discharges en-
croaching upon relative refractory periods, might furnish a chemical signal
for cellular mechanisms controlling neural adantion, particularly after
associative stimulus pairings as in conditioning. In cortical neurons, en-
trainment is probabilistically an uncommon event in contrast with PSP or
spike production, per se, resulting from natural auditory stimuli which serve
as CS's in Pavlovian blink conditioning {Woody et al. 1970; Engle and Woody,
1972). Other recent evidence (Woody et al. 1976d) indicates that entrainment
might interact with acetylcholine or cyclic GMP to control aspects of per-
sistent adaptation in mammalian cortical neurons.

6. The practical significance of using a closed-loop cybernetic approach
to understand cellular adaptation, even at the hiochemical level, is just
beginning to be re-evaluated and appreciate” - example, the follcwing is
excerpted from a recent review by Rasmusser ‘nan (1977).
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Jaly 1977 CALCIUM AND CYCLIC NL‘CUOT]DES

B. Open-Loop vs. Closed-Loop Contral Systems

1. General features

Nearly a'l models of peptide and amino hormone action. including the
second-messenger model. have been ones in which a sumuius (the normnane)
acts on a particular ceil or sudceiiuiar system to pracuce a pn\S'u.c"..m
response. In cybernetic termms, this is defined as an open-loop systerz g

OPEN LOOP CLOSED 100w
§ Peaa Bremt o
- - N

L 1"‘

nc. 3. Schematic representations of the con-
trast berween open-lonp and closed-100p svsiems n
the control of cellular response.

i B

However, in biological systems at all levels of organization, responses are "
dependent not only on present an? sast stimuli but an the response 1tseif,
according to the present organ:zat »n of the unmit and its pardicular enviren-
ment. This means that ceiluiar re-sonses w hormonai stimuli operate not as
open- but as cicsed-loop systems The cistinction s criticaliv importani:in an 3
open-loop system the response depords on the sumulus, but the conse rze s 1

|

not true. In contras:, in a ciosed-loop system the response influences the
stimulus—j.e., there is a feedback reiztionship detween stimuius and re-
sponse such that the response 12zeif madifies the effect and mazrituse of the g
original stimulus. Endocrine physwecaists have reaitzad for vears that at the
supracellular level endocrine systems operate as compiex, closea-loop svszems
(327), yet most endocrine brochemists continue w ana.vze hormone ac-:cn at
the cellular level in the context of open-loop models 1126, 190, 4131,

Considering these cellular control systems as closed-loap svsiems as
schematized in Figure 2, rather than an open-loop yin-vang svsiem ;s pro-
posed by Golcberg et al. (183), adds an important cimension to bo:- one's
understanding of the system and to the types of critical experiments one can
design to evaluate the hypothcsts.

The importance of making this distinczion in analyung hormone action
lies in the kinds of models of hormore action one butlds from exverimenwal
data and from these the type of further expeniments one designs to test Lhe:e
models. Ofev-n srr»a'er mpent, x'c o:e: -lunD svitems are the monoz:: i rule

cotrect intuitive grasp of Lhe nature of Lhe controi syslen in many sityalions
in which an op2n-loap anaiysis of the same experimental data would lead to a
confusing and contradiciory conclusion.

(Frorﬁ. Physinleqical Raviews)
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Systems of this type are of course restricted in the type.of operations
they can perfcrm and the geometric patterns that can pe tecogn1zed. For example,
such systems cannot compute connec tedness of gecemetric fiqures, whereas they can
compute convexity and related prccessing operations of the type calied Jocal or
conjunctively local by Minsky and Papert. Humans may not be able to compute some

forms of connectedness either:
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9. The possibility exists that a slight modification of Uttley's algorithm
can result in the introduction of a self-classifving input. By self-classifyina
input is meant an input of particular functional significance which is identifi-
able, within the adaptive element, by means of its stochastic pattern of appearance
alone. Moreover, this stochastic pattern need not unduly disrupt the overali
function of the adaptive element's operation.

~ B .Specific Objective ? was to develop microtechniques for rapid chemical
stimulation of cortical neurons.

'1. A devjce was constructed by which micro amounts of neurotransmitters,
cyclic nucleotides or other pharmacologically active agents could be delivered
through_f1ne pipettes placed intracellularly or extracellularly into
the m311eu immediately surrounding an intracellularly recor7ed cortical unit
(Sakai et a]: 1978a). Passage of this material through pipettes with iumens of
<1y was achieved by combining siliconization of the pipette barrel with applied
pulse pressures of_60-90 Psi. The use of pressure avoids the undesirable side
effect of current injection which is associated with previous jontophoretic
procedures. ]

2. The quantities of material delivered by such means through pipettes of
tip size 0.5 - 1.5u were determined in vitro and found to be more precise, guanti- )
tative and reproducible than those delivered by iontophores®s (Fig. 1 and Sakai 1
et al. 1978c). 1he high variability in amounts released by iontophoresis, the |
problem surrounding electro osmotic side effects of current passage on delivery, 4
and the need for lengthy "warm-up" periods during which active agents are released
through the pipettes are well-known and documented in the past literature (Hoffer
et al. 1971; Zieglgansberger et al. 1974). The pressure microinjection technique
appears to circumvent these oroblems. Fig. 1 shows reproducible delivery of
volumes 1,000 - 10,000 times smaller than those previously obtained by any pressure
microinjection technique. Controlled release of 100 femtoliter volumes are obtiined
(cf. Sakai, et al., HMeuropharmacol., 1979). A number of other laboratories are
adopting this technique for testing local biological effects of pharmacologic agents.
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7. The informen moce! of an adaotive neural elsment (Uttlev, |
incorpora*es classifying inputs, closad-locp fsectac< corcerning +he
tional state of the element, and an aopreciation of goal-seexing in T
rithm regularting useful adapration. Saveral constraints are particulariz
that are criticatl if the informon is to successfully discriminate one unpu
from another. These are a) the aigorithm by which the weightings of synaotic
inputs ars altered, b) the need to achieve system normalization through neca-
tive (not positive) feecback of information regarding the current system
state, and ¢) the need for a classifying input to distinguish cr identify
which input signal is the particular signal to be discriminated. Tests of
this model have found that each of these constraints is required far the
alement to adapt usefully. Synaptic weighting is altered accerding to the
Shannon mutual information function between certain synaptic inputs in com-
bination wi*tn closed-lsop negative feedback refiecting the element's internal

state.

In summary, it would appear that there are empirical as w~ell as theore-
tical reasons why "smart" adaptive elemants nesd to incoroorate goal=-seeking
as well as closed-lcop feedback into their design.

8. In some adaptive networks, input 2nalysis, i.e. the processing of
sensory-latelled information (cf. Mountcastle, 1974), is explicabie in terms
of the group invariance thecrem of Minsky and Papert. This theorem permits
analysis of operations, such as the geometry of certain sensory image procsss-
ing, by algebraic means instead of statistics and thereby reverses a trend in
this field. The group invariance theorem examines the relaticnship between
all pcssible receptor activations (aif sets of sensory lapels) and their re-
presentation across the theoretical space of an acaptive network, given cer-
tain architectural constraints. The result is a description of an orderly
relationship in which no matter how complexly the network is organized, the
space requirad for a particular sensory labelling can be specified. In
surmary form, the group invariance theorem statss that if:

1) G is a finite group of transformations of a finite space R;
in §Is a set of predicates on R closed under.G;
in ?,ls in i (é) and invartant under G.
Than ‘fhero ulsrf 3 linear represenfahon of
= J Z —- 1550 b O_I
lfor which tne coaf hc-en?sﬂ? depend only on the G-oquwalence class of ?’ that Is
lf f“ ?’?hanpy '5,65,
L £ls the set of all predicates tor which /IS a |inear threshoid function with
respect to é » and 3 predicate is a function that has two possible values, I.e.
8 binary function.

Y is a Jinear threshold function with respect fof(wm L @)), it there

oxists a nurtor 6. and 3 set of numbers,o(;ﬂ one for each f’in% , SUGh Tnar:

Equation 7. tt’(x) [Z o(‘f L‘P()() > 9] 7
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Fiqure 1 Measurement of volumes delivered through micropipettes of tip size
0 %, 0.9 and 1.2u by pressure application.

A. Dirgct msasurement of 3H - Acetic acid (CPM) extrapolated to volume deliver-
ed inu3 (10% - 109). Each line represents a different micropipette with tip
size as shown. _

B. Quantitative delivery of volumes ranging between 10V - 1023 from a grouo of
15 pipettes. These volumes were determined by measuring the size of the extruded
droplet in oil under a microscope. This permitted accurate measurement of the
smallest volumes delivered, which were below the noise-sensitivity level of scin-
tillation counting of 3H Acetic acid. Where the data overlapped, there was gen-
eral agreement between the two techniques of measurement.

C. Shows the data from part B, averaged for electrodes of three different tip
sizes. The volumes delivered depend on tip size and the duration of pressure
application. Note the log - 1og plot.

D. Volumes obtained by repeated pressure application through two different
electrodes, one> 9u, the other< 9u. Mean and standard deviations are shown
at 120 sec. The reproducibility is good, even for small volumes of<< 10343,
relative to that afforded by other techniques.
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3. Morphological identification of el=ctrerhysiclcaically studied cortical
neurons was found possible by pressure microinjection of a ma~king asent, norse-
radish peroxigase (1HkP), througn the pipet*te used ror intracellular racording
(Sakai et al. 197-a, bl. HRP, a large macro-nolecule of 20,000 ", is injected
intracelluiariy by nressure aoplications of 1-10 sec in sufficient imounts to
permit visualization of the cell, its axonal-dendritic branchings, and the
spinous processes of the dendrites. The location of a high proportion of the
cell somas within the cortical layers is determined by a core biopsy procedure
which also permits the survival of the preparation {Sakai et al. 1973a). The
development of this technique represents a significant technological advance,
promising extensive applications anatomically, neurophysiologically and
neurcopharmacologically.

4. The sampling distribution of neurons obtaired by our intracellular, cor-
tical recording procedure was investigated. The sample of HRP-idgcntified neurons
was found to be essentially eaguivalent to that seen in-situ (determined from
Golgi-stained sections of these cortical regions). Seventy percent (703) of
penetrations were of cells in layers IIl and V, and 707 of penetrations were of
pyramidal shaped cells. There was a slight tendency to over-samnle neurons with
extensive dendritic arborizations. As shown in Table II samplings of every major
morphologically identified, in-situ cell type were obtained by our electrophysio-
logical procedures (Sakai, et al., Brain Res., 1978).

C. Specific Objective 3 was to examine, intracellularly, the response of
cortical neurons to delivery of an unconditioned stimulus (US) required as part
of an associative pair for the production of conditioned learning.

1. The effect of presenting unpaired glabella tap on the excitability of
cortical neurons was studied (Brons et al. 1973). Data from animals receiving the
tap US were compared with data from naive animals given no US. The following pre-
liminary results have been obtained:

a. Levels of reuronal excitability to intracellularly injected current
are higher,in cats receiving US, in cortical neurons projecting poly-
synaptically to the same facialmusculature activated during the uncondi-
tioned response to the US (Table IIIA).

b. Levels of neuronal excitability to extracellularly injected current
are lower in motor projective cells of cats receiving US (Table I115).

c. Most cells studied intracellularly show an IPSP in response to tne

s (Fiq. 2).

d. The effects of US presentaticn on unit discharge were also assessed
(Table IV). The predominant effect of US delivery on cortical neurons

was a reduction in rates of discharge; however, on

Day 2 of US presentations, a significant increase was observed in the
numbers of cells responding with increased rates of discharge to US deli-
very. Evidence has been found for three US effects: 1) a transient in-
crease in intraceilular excitability lasting hcurs or days but not weeks,
2) a decrease in extracellular excitability of unknown duration and 3)

an increase in the numbers of cells activated to discharge by the US from
Day 1 to Day 2 of serial US presentation. (Brons, J. Doctoral Thesis,
UCLA, 1979).
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Suppression of spike activity and |°SP seen in a cortica! neuron following
delivery of glabella tap - US. Upper traces are superimcosed intracellular
records frcm a neuron of +he coronal-pericruciate cortex; lower traces

show the tap delivery.
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2. Effects of low frequencv stinulation of the pyramidal tract on cortical
neurons were invastigated. (Antidromic stimulation of the pyramidal tract has been
used successfully as a US to oroduce conditioned learning by 0'Brien and colleagues).
Cortical cells activated antidr iically responded predecminantly with reduced
excitability to intracellular, applied current. Cortical cells activated trans-
synaptically responded with increased intracellular excitability. Those cells
failing to respond snowed no change in excitability during the 5-15 minutes tested.
(Tzebelikos and voody, Brain Res. EBull., 1979).

A comparison of these results with those of high frequency stimulation {(usually
- >50 HZ) reported by Bindman, et al., J. Physiol., 1979 is shown on Table V. As
f indicated, the direction of change is frequency dependert and differs between anti-
dromically and transsynaptically activated units.

3. The response properties of penetrated neurons to injected polarizing
currents were investigated and tound to be normal. The acccmodative response
to ramp depolarizing currents was assessed; most respenses were of the simple
type rather than ceiling or minimal gradients, (cf. Koike et al., Exp. 3r. Res.,
1963a, b). MNormal I-V plots and input resistance were also obtained. Several
lines of evidence sujgest that many cortical neurons have passive dendrites wnich
serve the integrative process of neuronal information handling (Woody and Gruen,
Brain Res., 1978).

D. Specific Objective 4 was to characterize cellular effects of possible
chemical modulators of the excitability of cortical neurecns:

4 1. Effects of acetylcholine (ACh) and cyclic GMP {cGtP) on membrane resistance
3 were studied in groups of morohologically identified neurons. HRP was pressure
injected into the cells after studying the effects of ACh. cGMP was also aoplied
intracellulary by pressure injection. Pyramidal cells of layers V and VI respondec
to these agents with increases in resistance. The responsive neurons included those |
of layer V activated antidromically by PT stimulation.

St st il Ui mau

A comparison of the results of pressure injected cGMP with those of intracel-
lularly iontophoresad cGMP showed similar changes in resistance, but the increase
in firing rate after the hyperpolarizing iontophoresis did not occur after pressure
injection. The increase in firing rate following application of acetylcholine
appears to be a separate effect of this agent, apart from that supported by cGMP
as a second messenger. This effect may arise from excitation of surrounding
neurons pre-synaptic to the one recorded or from other, direct conductance effects %
of acetylcholine binding at the neuronal receptors. (Swartz and Yoodv. J. Neurobiol., :
1979; Woody et al., Soc. Neurosci. Abst., 1979).

2. Acetylcholine (ACh) and cyclic GMP (cGMP) appear to have similar effects ;
on membrane resistance, ACh acting extracellulariy. The membrane resistance is E
increased transiently by the effect of these agents alone and persistently by g
coupling these applications with cell depolarization sufficient to produce re-
peated discharge (Woody, et al., Brain Res., 1978).




It appears that neurotransmitters act in a dual :nanner in these cells, as in
others, to convey information. One action, the direct "neurotrancmitter effect”
serves primarily to transmit information thrcugh the cell. The other action, the
"modulatory effect” serves to control adaptation as a function of the informaticn
transmitted. The two actions are kept separated in the time -frequency domain by
different time courses of involved biochemical pathways. See (Xlop?, A.H., Brain
Function and Adaptive Svstems -- A Heterostatic Theory, AFCRL Dept., HI133, 1972).

A third variable, depolarization induced discharge, serves to make the adap-
tation persistent rather than transient.

3. In a simulated neuron, consequences of active and nassive denrdritic mem-
branes on information transtfer orojerties wera s+tudied. With icw rates of current
spread, the neuron became a bistable (gecisional) operator where sniking was en-
hanced if the threshold was belcw a certain level and suppressed i above that
level. The enhancement was considerably more pronounced in neurons with passive
than with active dendrites. With active dendrites a less intense irput was needed
to initiate somatic spiking (Levine and Woody, Biol. Cybernetics, 1978).

4. Prototype studies of the ability to morohologically identify types of
neurons respondira to ACh or cGiiP were conducted using aceclidine, a cholincinimetic
drug. Similar effects on membrane resistance were obtained with this drug, and
the effects could be blocked by atropine (a muscarinic receptor blocker). A cell
responding to aceclidine with an increased resistance was identified by injection
of HRP as a pyramidal cell of layer VI (Swartz, et al., Proc. West. Pharm. Soc., 1973).

5. Effects on cortical neurons of intracellular application of cyclic AMP
(cAMP) are being investigated. The cAYP is appiied by pressure microinjection
(0.1 mM solution in 4% HRP injected at 60-80 psi for 1-5 seconds). The followirg
effects have been seen in HRP injected cells: a) decreases in firing rate, b) hyoer-
polarization, c) small decreases in membrane resistance, d) small decreases in ex-
citability to intracellularly injected current. Pyramidal cells of layer V are among
those showing these responses. Continued studies are in progress.

E. Specific Objective 5 was to investigate effects of hypothalamic reinforce-
ment on adaptation of cortical neurons.

Effects on rates of conditioning of adding hvpothalamic stimulation (HS)
to classical application of CS (click) and US (qlabella tan) were studied. The
following are the preliminary results of pairing click CS with glabella tap (ISI,
340 ms) and HS (240 ms after tap). A hiss of intensity ccorparable to click CS
was also presented 4 sec after HS as a discriminative stimulus (DS).

a. CRs emerged within 30-50 pairings or less (Fig. 3 ) instead of requirinrg
the usual 100 or more pairings.

b. CRs were extinguished when click and hiss were presented alone.

c. A preliminary report of the results has appeared (Kim and Woody, Soc.
Neurosci. in Abst., 1979).

13



1007 Hiss

Figure 3 Averaged responses to CS (click) and DS (hiss) in cats trained
using hypothalamic stimulation plus click-CS and glabella tap-
US. Data from initial habituation sessions show little or no

- naive response. Cy_yr1, Max are conditioning sessions; Ej-I11

are extinction sessions; Ext-Sens are sessions with.

CS-HS order reversed to test for sensitization.
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'Cybernetic Formulations Concerning Adaptive Networds

TABLE |

CONFERENCES AND WORKSHQPS

Adaptive Networks

Participants J. Brons D. Levine
A.A. Buerger B. Swartz )
A.H. Klopf C.D. Woody :

Participants A.A. Buerger M. Nahvi2
A.H. Klopf C.D. Yoody ]
D. Levine i

The Role Of Cyclic Nucleotides In Central Synaptic Function

Principal Speaker: Floyd B]oom3

Participants J. Brons H. Sakai
J. Buchhalter M. Sakai
E. Gruen B. Swartz
; P. Guttenberg E. Tzebelikos ;
A.H. Klonf B. Wong 13
D. ! C.D. Woody
Discussion of: "The Tranc: Information And The Effect Of Loca] Feedback
In The Theo: ~nd Neural Networks" by A.M. Uttley
Participants A.A. Buerger1
A.H. Klopf
D. Levine
C.D. Woody
Closed Feedback Loop Formulation A
Principal Speaker Mahmood Nahvi2
Particpants A.A. Buerger D. Levine
A.H. Klopf C.D. Waody

Cellular Mechanisms Of Neural Control And Their Possible Application To Closed-Loop
Reinforcement Of A Goal-Seeking Adaptive System

Participants A.H. Klogf B. Swartz
C.D. Woody

M. Nahvi




Table I continued

Calcium lons And Cyclic Nucleotides As Universal Second Messengers

Principal Speaker: M.H. Rasmussen5

Participants J. Brons H. Sakai
J. Buchhalter M. Sakai
A.A. Buerger B. Swartz
E. Gruen E. Tzebelikos
A.H. Klopf C.D. Woody

Feedback Control Of Adaptations In Theorztical And Real Neurons

Workshop leader AM. Utt]ey6
Participants A.A. Buerger M. MNahvi
A.H. Klopf C.D. Yoody

Connections Between Artificial Intelligence And Theories In Neurosciences

Principal Speaker M. Minsky7

Participants J. Brons H. Sakai
A.A. Buerger M. Sakai
J. Buchhalter B. Swartz
E. Gruen E. Tzebelikos
A.H. Klopf C.D. Woody
Adaptive Networks, Neurophysiology And Testable Hypothes=s Of Heterostatic Goal-seeking
Adaptations
Participants M. Arbib N. Spinelli
A.H. Klopf C.D. Woody
M. Nahvi

Neurochemical Control of Neuronal Adaptation

Participants Dr. T. Bartfai, University of Stockholm
Dr. D. McAfee, City of Hope Medical Center
Dr. D. Carpenter, AFFRI
Dr. P. 0'lLague, UCLA
Dr. C. Woody, UCLA
Dr. A. Barto, University of Massachusetts
Dr. A.H. Klopf, USAF
Dr. M. Sakai, UCLA
Dr. M. Matsumura, UCLA
Dr. H. Sakai, UCLA
Dr. B. Swartz, UCLA
Mr. J. Michkinsky, University of Ma.sachusetts
Mr. M. Poe, University of Massachusctts
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Table I continued

1 - Assistant Professor, University of California, Irvine, California

2 - Chairman, Department of Electrical Engineering, Arya-Mehr University
of Technology, Tehran, Iran

3 - Director, Arthur V. Davis Center for Behavioral Neurobiology, Salk
Institute, San Diego, California

4 - Not Present
5 - Department of Internal Medicine, Yale University School of Medicine
6 - Laboratory of Experimental Psychology, University of Sussex, England

7 - Professor, Massachusetts Institute of Technology, Cambridge, Mass.
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TABLE 11

i Distribution in different layers of the coronal-pericruciate cortex - d17-

erent cell types penetrated intracellularly and injected with hor =2«

peroxidase.
|
C?;;e Pyramidal Ste' Tate et form
f Small Medium Lar8e Betz
: («15um) | (15-25um) (25-40um) (>40um)
I
3
] Layer
' I 1
[I 1 1 3 1
I11 4 6 1 3 1-
IV
v 3 5 5 1 1
VI 1 3 1 E ;
White .
Matter 2 c
TOTAL 6 13
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CELLS FROM TABLE II

T R ST 2 ot e STV IR
1!¢\°xl3..5:. " ..,_‘,"‘l.j-.‘ ’~, -.'.)”."‘t .e
/ﬁ b 2 "' ‘-qu : ‘

R L LR " ‘a ":'\'
S FEOIE AL Ny

Y

Cagg W
L]

Five different types of cells from the coronal-pericruciate
cortex of the acdult cat that were penetrated intracellularl:
and injected with horseradish peroxidase. 1) A horizontal

cell located in the border area between layers I and II. Main
dendrit-- crotrude frem either side of the sema. Thin spines
were on the distal dendritic branches. 2) A stellate

cell 2 in layer II. Many main dendrites cc.;2 off radially
from ti. soma. Thin spines appeared on the dendrites after tne
primary branchings. 3) A small pyramidal cell lc.ated in layer
III. The apical dendrite extended to laver Il wi*-h several
branchings in each layer. &) A Betz cell locatec in layer V.
Apfcal and basilar dendrites with many spines were seen. Axon
{s indicated by an arrow. 5) An inverted pyramic.i cell located.

in layer VI. 6) Intracellular spike activity of c211 (4) g
at penetration, the latter accompanied bv a shift in baseline b
potential as illustrated. Long, vertic rallel bars are 7
artifacts frem passing 0.5nA, 10 msec acro<s a Wheatstcne 3
bridge at 100 mse:z incarvais. Action . .1ais <2n be seen ;
between pulse artifazzs. Tha verticai . is 20a.; the horizontal ;
bar in 400 msec. A1l calibrations for pictures of the cells 3
are 30um, :
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TABLE II1

Mean (¢t s.d.) levels of intracellularly (A) or extracellularly (B) injected
current (nA) required to excite neurons of various facial motor projection in

cats given glabella tap as US and in cats not given US.

Projection is divided

into that to eye, nose, both eye and nose and neither eye nor no-e musculature.
Numbers of cells studied are shown in upper right corners.

A.

us

Naive

UsS

Naive

Eye Nose Both Nejther
0.6 0.2 10 0.9t0.5 3| 0.7¢ 0.4 14 0.7 % 0.4 26
3 A
17 21 v 23 Y
1.0 £ 0.5 0.9 0.6 1.0 0.5 0.9% 0.4

X = values significantly different with p< .05, 1 tail Student t test

5.0 1.1 8| 4.9 .10 2 5.02 0.9 311 4.9.0.9 2
3 Z
) ) 11 U3 75
7+ 0.9 4.1 +1.2 3.7: 1.3 4.8 + 1.1

([ ]
"

3
3
y 4

p:

.06

20

values significantly different with p< .05, 1 tail Student t test




TABLE 1V

% of cells responding with increased discharge (E), decreased
discharge (I) or failing to respond (UR) to glabella tap US

on days 1 and 2 of repeated US presentations. Numbers of cells
tested (n) are shown to the right.

3 I UR n
Day 1 29% 36% 35% 55
Day 2 *55% 27% 18% 73

*difference significant, Chi sq. p<.025
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TABLE V

Comparison of effects of high and low frequency
PT stimulation on cortical neural excitability.

Low Frequency (Woody)
Antidromically activated: excitability

Transsynaptically activated: excitability

Unresponsive: no change

High Frequency (Bindman, et al.)

Antidromically activated: excitability

Transsynaptically activated: excitability

Number of cells responding to low frequency
stimulation:

Excit + Excit + No change
Antidromic 14 . 9 11

Transsynaptic 6 21 15

Unresponsive 1 2 37
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